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Germany 
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Abstract. The general theory of the influence of gravity, inertia (i.e. interferometer motion) 
and space-time torsion on the outcome of neutron interference experiments is presented. 
The exact results are obtained in a general relativistic treatment based on the description 
of a stationary working interferometer in Riemann-Cartan space-time and on the WKB 
approximation for the neutron waves. Particular attention is paid to the influence on the 
spinor amplitude. There are two types of resulting amplitude effects; one originates in 
the non-integrability of the spinor connection and represents the influence of a modified 
Riemann-Cartan curvature; the other is caused by the influence of the interferometer 
rotation and acceleration and of space-time torsion during the time interval between the 
emission of the two coherent neutron waves. For practical purposes small effects are 
treated in an approximation. Two examples of a global evaluation of the expressions are 
given. Applications including a gravitational Aharonov-Bohm effect are discussed. 

1. Introduction 

During recent years increasing efforts have been made to incorporate quantum- 
mechanical concepts into general relativity. Motivated by the intriguing possibility of 
a unified theory of all physical interactions, quantum mechanics and quantum field 
theory in given curved space-times, quantised gravity, supersymmetric formulations, 
gravity and topology and similar subjects have been studied. Despite considerable 
efforts in the formulation and construction of quantum gravity and supergravity, the 
empirical basis of all these approaches is extremely limited and still on a level which 
is a long way from today’s sophisticated theoretical research. Furthermore, the 
development of a theory of the empirical verifications of possible influences of gravity 
on quantum-mechanical systems is only just beginning. The aim of this paper is to 
contribute to such a theory. We want to explain the principles involved and outline 
the methods employed for the example of the influence of gravity, inertia and 
space-time torsion on the outcome of a neutron interference experiment. 

Before doing so, let us briefly summarise some aspects of neutron interferometry. 
The field of interferometry in the Angstrom region was opened for x-ray photons by 
Bonse and Hart (1965). The perfect-crystal neutron interferometer was first realised 
by Rauch et a1 (1974). As far as basic research is concerned, the important property 
of neutron interference is the fact that the coherent neutron beams represent a 
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macroscopic quantum system? which can be influenced on a macroscopic scale. It is 
this property which has made it possible for the first time to detect the influence of 
the Earth’s gravitational field on a quantum-mechanical system in the genuine quan- 
tum-mechanical effect of a phase shift (Colella et a1 1975). Other important experi- 
ments in the context of basic research are the detection of the influence of the rotation 
of the Earth on the phase of neutrons (Werner et a1 1979), the observation of the 
sign change of spinors under dynamically induced 27r rotations (Rauch er a1 1975, 
Werner et ai 1975; see also Rauch et a1 1978) and the neutron analogue of the Fizeau 
experiment (Klein et a1 1981). For a survey of the theoretical and experimental 
literature we refer to the proceedings of a workshop (Bonse and Rauch 1979) and to 
the reviews of Rauch and Petraschek (1978) and Greenberger and Overhauser (1979). 

A neutron interferometer is sketched in figure 1. A single crystal of silicon has 
been cut to form three connected slabs. The neutron wave is split into two coherent 
parts by the splitter s, conducted over separate beam paths I and I1 and superimposed 
behind the mixer m. Phase shifts and spinor transformation of the wavefunctions may 
be induced, via the paths I and 11, leading to intensity and polarisation effects in the 
resulting interference pattern. A space-time diagram of the interference experiment 
is given in figure 2. The tube represents the worldlines of the interferometer with 
tangent vectors ua.  S and M are the worldlines of splitter and mixer. The two coherent 
beams with four-velocity u a  interfere along the worldline M. In general, two beams 
interfering, for instance, in the space-time point B will have left the splitter at different 
worldpoints A. and AI,  separated by a time delay. 

r m 

Figure 1. Neutron interferometer. 

Let us recall that, as far as the influences of the Earth’s gravity and rotation on 
the neutron phase are concerned, the outcome of the experiments above can be 
sufficiently described using the Schrodinger equation, the Euclidean theory of non- 
inertial reference frames and Newton’s theory of gravity. This characterises today’s 
status of empirical verification. In this paper we want to do the next step in elaborating 
a complete theory of the simultaneous influence of gravity, rotation, acceleration and 
space-time torsion on the phase as well as on the spinor amplitude (spinor polarisation) 
of the coherent neutron waves. This can be done within the WKB approximation in 
an exact way. For practical purposes the respective results may be approximated. An 
exact treatment of the influence on the spinor phase only has been given by Anandan 
(1977). The influence on the spinor amplitude has been discussed in the framework 

+ Macroscopic quantum systems, like superconductors and superfluid helium, seem to be the best candidates 
for the detection of gravity-induced quantum effects (Audretsch 1981a). 
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Figure 2. Space-time diagram of the worldlines of the interferometer and two coherent 
neutron beams. S is the four-worldline of the neutron source and the directly attached 
splitter. M is the four-worldline of the mixer. Neutron beams I and I1 interfering behind 
the mixer at the worldpoint B, have left the splitter at A0 and Al. The tangent vectors 
to the interferometer congruence and the neutron trajectories are u n  and ucI. 

of non-relativistic Pauli theory by Eder and Zeilinger (1976) and by Zeilinger (1976). 
We extent the discussions by a general relativistic treatment of the spinor amplitude. 

In a metric theory of gravitation, space-time geometry on one hand and gravita- 
tional and inertial forces on the other hand are unified. These two types of forces 
are thereby abolished. But, although they are no longer primary concepts, they can 
still be recognised in the relative acceleration of freely falling particles and in the fact 
that the kinematics of a field of observers influences their respective measurements 
in a specific manner. Accordingly, neutron interference may depend on the kinematical 
behaviour of the interferometer and on curvature, torsion and topology of the space- 
time. 

The purpose of this paper is to discuss the related effects. We first present in § 2 
an exact theory of the interference experiment in Riemann-Cartan space. It is based 
on the WKB approximation of the Dirac theory as given in § 2.1 and on the space-time 
description of stationary working interferometers in § 2.2. The resulting interfering 
spinorial wavefunctions are obtained in § 2.3. The expression for the phase shift is 
given in 0 2.4. Via the amplitude, rotation and acceleration can influence interference 
patterns only in the case of non-vanishing time delay. This time delay is worked out 
in § 2.5. Section 3 contains the approximation for small time delays, small inter- 
ferometer areas and non-relativistic motion. Two particular examples of a global 
evaluation of the exact expressions are treated in D 4. To demonstrate how the results 
may be used, we discuss some applications in 8 5 .  The gravitational Aharonov-Bohm 
effect of § 5.3 shows that topology too may influence the interference. Finally, our 
conclusions are specified in § 6. To complete our treatment, we give in appendix 1 
two theorems of the theory of time-like congruences which we need for the discussion 
of interferometer kinematics. How a stationary working neutron source is to be 
described can be read off directly from the definition of the spinor Lie derivative as 
given in appendix 2. The fact that interferometers, as described in § 2, really lead to 
a stationary interference pattern is shown in appendix 3. 
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2. Exact theory of the neutron interference experiment 

2.1. Propagation equations 

To describe the influence of space-time torsion, gravitational and inertial forces on 
neutrons, we use the Dirac theory in Riemann-Cartan space-time. The respective 
field equation is: 

itryW(4, - m$ = o G a p  = $ y l a y f l l ,  (2 . la ,b )  

Torsion SaPY = rEUplY enters the field equation (2.1) by the contortion tensor KapY = 
-S,pY + SPYa - Y a p .  Metric and torsion act as external fields. 

We assume that the neutrons travelling in the interferometer may be described in 
the WKB approximation. The respective propagation equations have been derived by 
Audretsch (1981b). By inserting the WKB ansatz 

into the Dirac equation ( 2 . 1 ~ )  and equating the coefficients of the different orders of 
h to zero, we obtain the Hamilton-Jacobi equation (d,C$)(d"C$) = m 2  for the phase 
4 (x).  The time-like congruence orthogonal to the hypersurfaces of constant phase 
4 ( x )  is given by the unit vector field U, = -m-' a&. It agrees in the classical limit 
with the normalised Dirac current j" with ( j E j f  )-*'*ja = U, +O(h) and describes the 
neutron 'rays'. The respective propagation is geodesic with regard to the Christoffel 
connection (extrema1 path): u n : , u F  = 0. The four-momentum p a  of the neutrons is 
introduced as 

(2.3a, b )  pupa  = m  . 
Note that for the WKB approximation $ = exp(iq5(x)/h)ao(x) there is no influence of 
the torsion on the phase propagation. Torsion cannot be measured this way. 

For the propagation of the WKB spinor amplitude a. along the U" lines we then 
obtain after decomposing a0 with regard to the normalised spinor bo according to 

a0 = f ( x M x )  bobo = 1 (2.4a, 6 )  

2 pa  = mu, = -a& 

- 

the two propagation equations 

( a , f ) ~ "  = -te,f BL = U",, (2.5a, b )  

and 

(d,bo+ FnbO)un = 0 (2.6) 

+ Notarions and conuentions. We use c = 1, unless c is explicitly inserted into an equation. Signature of 
metric tensor g,,: (+, -, -, -). a, 6, . . . = 0, . , , , 3  are tensor indices raised and lowered with gap. a, b, . , . = 
0 , .  . . , 3 and Ci, 6 . .  . = 1, 2, 3 are tetrad indices raised and lowered with qab = diag(+l ,  -1, -1, -1). Par- 
ticular values of a, b, . , . are denoted by brackets: A " ' = A " = ' .  Symmetrisation: A,,,, =+(A,, +A,,). 
Antisymmetrisation: A ~ , , ~  = ;(Aa, -Ap, J and A,aP,, = f(A,r,,1 +AplvU1 +A.,roo,). Projection is denoted 
by a bold face index: A" = h g A 4  with h i  = 8; -u ' l up .  The covariant tensor derivative with regard to the 

Christoffel connection is denoted by a semicolon: ( . The corresponding spinor derivative is V, = 8, + r, 
with rLL = - ih : , ,hhpGah and Gah = where h z  is a tetrad (hzhfg,, = vah) and y" of y u  = h:y"  are 
the standard Dirac matrices: y " y h ' =  qah,  

11 11 

0 
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where we have introduced the new connection 

(2.7a, b )  

It contains only the totally antisymmetric part of the torsion. 6 ,  represents the 
expansion of the neutron rays and equation (2.5) relates this expansion to the change 
of the intensity of the neutron ray. Equation (2.6) shows that the normalised spinor 
amplitude bo is parallely propagated with regard to the new spinor connection Fu 
which, in Riemann-Cartan space, governs the WKB limit of the dynamical spinor 
propagation. The components of the torsion which enter our calculation can be 
combined into the axial vector part of the torsion K ”  = ~ q ” a p y K ~ a p y ~  with qupy6 = 

1. h Eh f h  :h abed and E (0)(1)(2)(3) = 

The physics of the neutron field is described by the Dirac current 

j ”  =Jy”4 = f 2 u W  + ~ ( i i )  (2.8) 

and by the spin vector 

S” = ljy”y5* = f 2 S ”  +O(h)  3” = &yFy5bo. (2.9a, b )  

y 5  = iy‘o’yi1’y‘2’y‘3’. The normalised spin vector &’ represents the direction of the 
neutron polarisation in the rest-space of the particle (#J,I~ = 0). 

2.2. Interferometer and neutron source 

In this section we will discuss the requirements which the external fields, the inter- 
ferometer and the neutron source have to fulfil, as well as the instructions for the 
performance of the experiment. The basic intention is thereby to introduce an 
experimental arrangement in a Riemann-Cartan space-time which guarantees a 
stationary interference pattern. 

2.2.1. Stationary interferometer. The 4-worldlines of the matter elements (compare 
with figure 2) which constitute the interferometer body form a time-like congruence 
with normalised tangent vectors u “ ( x ) .  Because macroscopic bodies with no net 
elementary-particle spin are not influenced by torsion (see, for example, Yasskin and 
Stoeger 1980), the kinematical properties of this congruence can be described with 
reference to the Christoff el connection only. We demand a stationary interferometer 
which is characterised by the following three requirements (compare with appendix 
1): (i) rigidity of the interferometer - (Al . l i ) ,  (ii) constant interferometer rotation t* 
(A1.2ii) and (iii) co-rotation of all non-gravitational forces on interferometer elements 
causing the deviation from free fall- (A1.2iii). 

According to the two lemmas of appendix 1, the consequence of the physical 
requirements (i)-(iii) is that the interferometer congruence is isometric 

(2.10a, b, c )  ?gm8 = 25(a ; p  j = 0 9 u ”  = o  U a  = 
.E 

and that the acceleration a d  has a potential U ( x )  (compare with A1.4)) 

a, = -8,U(x) (a,U(x))u” = 0. (2.11a, b )  

For a non-freely falling interferometer, the potential U ( x )  consists of the gravitational 
and centrifugal potentials. 
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Because of ( 2 . 1 1 ~ )  the potential V ( x )  is constant along the interferometer's 
worldlines and may, therefore, be gauged according to 

S u=o (2.12) 

on the worldline S of the neutron source. 

2.2.2. Stationary neutron source. We represent the source which produces the 
polarised neutron beam by a co-moving tetrad &z along the worldline S with 
ipo, 2 u u  and &:(S) (6 = 1 ,2 ,3 )  pointing always to the same neighbouring element 
of the interferometer so that i z  rotates and accelerates in the same way as the 
interferometer. The rigidity of the interferometer congruence makes such a choice 
possible, 

The u a  congruence being isometric (2.10), we have YCipb, 2 0. Orthogonal 
connecting vectors of an isometric congruence are Lie transferred which implies 

0, so that the complete co-moving tetrad field h"z(S) is obtained by Lie 
propagation. 

That the neutron source is working stationary means that the spinor amplitude 
ao(S) of $2 .1  does not change numerically when referred to the co-moving tetrad 
i z  (S) and is, therefore, obtained by co-dragging with the Lie-displaced tetrad i z  
(Lie transfer of spinor, compare with appendix 2). This implies that the spinor Lie 
derivative of a .  along S with regard to the Killing vector 5 vanishes: 9 g z o  = 0. S 

With the decomposition (2.4) and because of (A2.86) we find 
S 

9f = 0 (2.13) 
5 

and therefore 
S s 

2 b o  5 = 0 (aubo)uu = [ - r e U e  -$(a[&pl)GaB]bo, (2.14a, 6 )  

whence, along S the absolute value f of the generated spinor is constant and its spinor 
direction bo is Lie transferred. The second equation is obtained with (A2.7). It 
represents the propagation equation for bo along the u p  worldline S. This completes 
the propagation equations (2.5) and (2.6). We note that the neutron four-velocity is 
also Lie propagated along S (compare with (A3.3)). It follows from (2.3) and (2.10) 
that the neutrons must be generated with constant energy E = puua : 

S 
(8,E)u" = 0. (2.15) 

2.2. 
the 
and 

3. Beam splitting and bending. The polarised incident neutron beam is split at 
splitter s (compare with figure 1 )  in two coherent polarised beams denoted by I 
11. For reasons of simplicity they are assumed to be of equal intensity: 

f I  = fII. (2.16) 

Furthermore, it is assumed that the two beams do not spread, that is 8, = 0, so that 
according to (2.5) the respective f remains constant along the two paths: 

( a a f l . l I ) U u  = 0. (2.17) 
Between splitter, mirrors and mixer the neutron waves are moving freely. The 

respective spinor is parallely propagated according to (2.6). In addition, there is a 
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change of the propagation direction of the two beams at splitter, mirrors and mixer 
which is a four-rotation causing a spin transformation. We assume that the effects of 
all these spin transformations cancel (i.e. add up to zero) and that the mirrors act 
point-wise without changing energy, so that the neutron paths may be represented 
by piece-wise geodesic worldlines ((2.256) is valid except for single points). So we 
may represent the four worldlines of the two beams as in figure 2. 

If, in addition to all the conditions stated above, the space-time torsion is stationary 
as well, then the resulting interference pattern in M does not change in time. See 
appendix 3 for proof. 

2.3. Interfering wavefunctions 

The differential equations (2.6) and (2.146) for the two spinor propagations and their 
solution in question are both of the type 

(2,18a, b )  

where the one-parameter family d(s) of operators is proportional to the generators 
G"' of spin transformations. The monotonically increasing parameter s is the arc 
length of the respective time-like worldline. 9 is the usual time-ordering operator 
with regard to s. 

The resulting wavefunction $(B) in B is obtained by the interference of the two 
WKE solutions $I and $11 reaching B along path I and path 11: $(B) = rLI(B) +$II(B). 

To work out $(B) we will relate the spinor (LI1(B) along the paths BA1, AIAo, 
AoB with the spinor JII(B) using the respective propagation equations. With (2.3) for 
the phase, (2.13), (2.16) and (2.17) for f, (2.6), (2.14b) and (2.18) for bo and the WKB 
structure 4 = exp(iq5/h)fbo we obtain the basic relation 

$ d B )  = exp(iAd/h)Y exp{ -f f, dx" 

(2.19) 

where we have inserted (A1.5) along AoAl. The ring integral is defined as $ =  
+[:; +[I, +[BA". The resulting phase difference Aq5 is obtained by integration according 
to 

(2.20) 

It is not demanded that space-time be simply connected. The interference loop may, 
for instance, encircle a singularity. 

The equation (2.19) reflects the following structure. There is no influence of the 
torsion on the phase Aq5. The first integral in (2.19) represents the non-integrability 
of the spinor amplitude which is caused by the non-vanishing of the generalised 
curvature related to the spinor connection Pa. The existence of the second integral 
in (2.19) goes back to the fact that, in general, the points A. and A1 do not agree. 
There will be a time delay between the emission of During this time 
interval the source may rotate with U,, and accelerate with a,. Because the spinor 
is co-moving with the source, rotation and acceleration cause spin transformations 

and 
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which are reflected by the first two terms in the integral 12;. An influence of the 
interferometer motion on the spinor amplitude (which could be called an inertial effect 
in the Euclidean notation) can be registered if and only if there is a time delay. The 
fact that the contortion K,,, appears in the integral JiA has primarily a technical 
reason; because the neutron source is not influenced by torsion, the co-dragging of 
the spinors from A. to A1 refers to the Christoffel connection only. To obtain the 
ring integral 4 in (2.19), one has to introduce a compensating term in 1,";. The resulting 
interpretation is, therefore, that torsion affects our result in a twofold way, firstly as 
part of the curvature of the tilded connection (2.7) and secondly in a linear way as a 
totally antisymmetric contortion along the path AoAl if there is a time delay. In the 
latter case it acts like a rotation of the neutron source, as can be seen in (2.19). There 
is no acceleration-like contribution to the torsion. 

J Audretsch and C Lammerzahl 

2.4. Phase shift 

The phase shift Aq5 of (2.20) has already been discussed by Anandan (1 977) in analogy 
to the treatment of the electromagnetic Sagnac effect by Ashtekar and Magnon (1975). 
We briefly sketch the proof of the exact relation for Aq5 which permits the computation 
of A+. 

We introduce the three-propagation of the neutron beam in the rest space of the 
interferometer 

nana = -1 nau" = 0. (2.21a, 6, c )  - 1 0  Ir n*=(-o"u,) v 

Decomposition of the neutron four-momentum p a  leads to 

p a  = Eu" + p n a  E 2 - p 2  = m 2  (2,22a, b )  

where E = m ( 1  -u'"''~ is the total energy, p = mu(1-  u ~ I - ' ' ~  the three-momentum, 
and U the absolute value of the neutron three-velocity, all as measured in the 
interferometer's rest space. 

The energy E has the constant value E ( A )  on the worldline S of the source because 
of (2.15). On the other hand, the p" streamlines are geodesic and [ " ( x )  of (2.10) is 
a Killing vector field. Accordingly, pa[" is constant along the neutron streamlines. 
Taking these two facts together, we have the result that p,[" is constant on the whole 
two-dimensional tube of the interferometer worldlines in the space-time diagram of 
figure 2 (the neutron worldlines lie on this tube). 

E ( A )  (2.23) C i i k l -  U I X l =  pa[" =p,ua e - E(xJ e 

where we have used the normalisation (2.12). Accordingly we find with (2.22) for 
Ad the resulting phase shift of (2.20) 

(2.24) 

where jI and JII denote the integrals J:o and J,",. 
If the space-time region is simply connected and the interferometer worldlines fill 

the interior of the tube, as is usually the case in all realistic laboratory situations, the 
Killing field 6" extends to this region and we may use Stoke's theorem to obtain the 
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phase difference: 

p (x )  = ( E ( A ) ~  e-2U'x'-m2)1'2 (2.25a, b )  

with the momentum p (x )  of the neutrons as measured in the interferometer rest space. 

2.5. Time delay 

In  general there will be a time delay 

U, dx" (2.26) 

between the emission of the two coherent neutron waves at A. and Al .  We can relate 
this time delay As to the phase shift Aq5 by 

~4 = -f p a  dx" =-€(A)  AS -m( J - J)q, dx". (2.27) 
I J  I 

Using (2.23) in the form m e"'"'/E(A) = (u,D")-~ and noting that (u,v')u, dx" = 
U, dx" is valid along the neutron paths A I B  and BAo, we get 

2 

A 4  = -E(A) AS -- (Jll-J) eUIX1u, dx" 
E ( A )  

(2.28) 

We complete the last term to a ring integral and solve the resulting equation for As 
to find the intended relation between time delay As and phase Aq5 : 

(2.29) 

which renders with (2.24) the following exact equation for the time delay 

with p ( x )  of (2.25). It is evident from (2.30) that the time delay has nothing to do 
with the closing gap of an infinitesimal parallelogram in a space-time with torsion. 
There is no such influence of torsion on the resulting interference effect. Again, if 
the Killing field extends to the whole interior of the two-dimensional tube on which 
the neutron worldlines are lying, we may relate the first integral to the rotation U,@ 

of the interferometer. 

3. Interference: the infinitesimal case 

3.1. Interfering wavefunctions 

The appearance of the time-ordering operator F in (2.19) makes a further 
simplification of this equation difficult. But there are two particular physical situations 
in which T may be omitted: one is the global case, where the operators d ( s )  of (2.18) 
commute for all values of s. This will be dealt with in § 4. The other situation, which 



2466 J Audretsch and C Lammerzahl 

is characterised by small resulting interference effects, will be called the infinitesimal 
case. It can be found in a simply connected space-time region for small time delays 
As  and small area AXaP 

A X n P =  danP  Ea =4qpaTsu A E = (-c,Ec")"2 (3.la, 6, c )  

of the interferometer. In the infinitesimal case the following integrals may be approxi- 
mated according to 

P ET6 I 
e-'w,P duo' = waP AXoP = -2w,E" (3.2) 

f Fa dx" = l?apKAGKA AXaP (3.4) 

where the modified spin curvature related to the tilded spinor connection is given by 

(3.5) 

The right-hand side of (3.2)-(3.4) is to be taken on the worldline S .  Terms of order 
( V / C ' ) ~  are neglected throughout this section. So the basic relation (2.19) reduces 
with (3.3) and (3.4) to 

41dB) = exp(iA&/h)(l + & , A G " ~ ) ~ I , ( B )  (3.6) 
with 

(3.7) 

According to (3.6) ~ I I ( B )  is obtained from $I(B) by a change of the phase and an 
infinitesimal spin transformation related to the infinitesimal Loreritz transformation 

Lap =SE + Z"0 zap  = Z[,@]. (3.8a, 6) 

1 
i Z K A  = - l?K~wvAE'" f [ t ( W K r  + 2 a [ , U ~ ] )  + ; K L ~ ~ A ] U ~ ] A S .  

We base our interpretation on this concept. 

3.2. Phase shift and time delay 

We reintroduce the velocity of light c and neglect the relativistic terms O(u2 /c2 ) .  
Equation (2.25) for the phase shift reduces then with the neutron momentum of (2.256) 

(3.9) P ( X  1 = p(A)[1- ( m  ' ~ ( ~ ) / p ( A ) ) l  

and with (3.2) to 

where we have introduced the difference A1 of the three-length of the two paths I 
and I1 A1 = -(I11 -jI)na dx" as measured in the rest space of the interferometer. 
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In the infinitesimal case, the time delay As of (2.30) reduces with (3.2) and (3.9) 
to 

(3.11) 

Because of (2.12) the path AoAl does not contribute to the ring integral. Along the 
remaining paths we have with (2.22) U, dx" = - [ c / u ( x ) ] n ,  dx" so that we obtain for 
the time delay 

(3.12) 

where AV ( x )  = U ( x )  -U (A) denotes the change of velocity which the neutron experi- 
ences within the interferometer. The integrations refer to the interferometer rest 
space. Equation (3.12) shows that the time delay between the emission at A, and A I  
may be caused by the rotation of the interferometer by a differing length of the two 
paths in the interferometer and by different influences of the potential L ' ( x )  on the 
neutron waves travelling along these two paths. Note that the influence of the rotation 
is a relativistic effect. 

3.3. Intensity and polarisation 

To obtain the intensity of the interfering waves &(B) and GII(B) and the resulting 
polarisation behind the mixer at B, we have to insert +(B) = +I(B) + +I~(B)  given by 
(3.6) into the Dirac current j "  of (2.8) and the polarisation vector S' of (2.9). Using 
well known relations for products of Dirac matrices, this leads, after some calculations, 
to 

j "  = 2[(1 +cos(A4/h))jP(B) + (1 +cos(A4/h))(3zup)jS(B) - ( s ~ ~ ( A ~ / ~ ) ) ( ~ z * " ~ ) S I P ( B ) ]  
(3.13) 

S" = 2[(1 +cos(A4/h))SP(B) + (1 + c o s ( A ~ / A ) ) ( ~ z " ~ ) S ~ ( B )  - (~in(A4/h))(3z*"~)jS(B)]  
(3.14) 

where we have omitted terms 0 ( z a p 2 )  according to our infinitesimal approach and 
introduced the dual z $  = $ v , ~ * ~ z , ~ .  jP(B) and SP(B) are four-current and four- 
polarisation of the neutron wave &(B) only, as it is leaving the mixer in B. 

Apart from the phase shift Ad, the two quantities j"(B) and S"(B) depend on the 
matrix z,, of an infinitesimal Lorentz transformation explicitly given in (3.7). With 
regard to a normalised time-like vector U,, which in our case may be the four-velocity 
of the interferometer?, the antisymmetric z,, can be decomposed into space-like 
vectors z ,  and I ,  : 

(3.15a, 6 )  

In the infinitesimal case the space-like vectors l, with I,, = z,,u " and z ,  are, because 

(3.16) 

+ T h e  calculation here and in 9: 4 can easily be generalised to a time-like vector which does not agree with 

MA E 

2," = 2," + 25[WU"I 2 ,  = $7),,KAZ U = ZT,U'. 

of (3.7), given by 

5, = -2&,KAhZnAu +a, As 

U 
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(3.17a, 6 )  

These formulae show that the tilded curvature and the interferometer acceleration 
a, result in an infinitesimal Lorentz boost whereas the left dual of the tilded curvature 
together with the interferometer rotation U, and three-axial vector K, of the torsion 
results in an infinitesimal Lorentz three-rotation. 

Introducing for g’, l’, z” the corresponding Euclidean three-vectors #, c, z 
according to 

(3.18~1, b )  

* d ~ u n A  - 1 P W P U  
Z, = -2*dEILKA AEKAu ++(U,  - 3K,) AS - 2 7  RPUKA. 

1 
F - 1 -  

I , U f l ( U , U I )  - -6 * 01 z,sf” = -2 * SI 

one can calculate from (3.13) and (3.14) the measured intensity 

J(B) =j”(B)u,(B) (3.19) 

and polarisation ŝ  usingJI(B) =j?(B)u,  =f ;  and neglecting effects of O ( v 2 / c 2 ) :  

J ( B ) / ~ J I ( B )  = $1 + cos(Ad/h) + (1 + cos(Aq5/h))(2c)-’[ * uI(B) 

+(sin(Ad/h))iz gI(B)] (3.20) 

SI(B) = (~JI(B)/J(B)){~(~ + cos(Ad/h))[&(B) - X z + (2~)-’[(#1(B) U I ( B ) ) ]  

+&sin(Ac#J/h))[iz - (2c )-‘CC X ut(B))]}. (3.21) 

The reference quantities with the index I are obtained experimentally by measuring 
intensityJl, polarisation SI and velocity U I  of the beam behind the mixer after screening 
beam 11. The influence on the spinor amplitude is reflected by the rotation z, and 
the boost f: Measurements of intensity and polarisation represent two independent 
tests of the influence of gravity, kinematics and space-time torsion on phase and 
spinor amplitude. 

4. Interference: the global case 

We assume that the operator d ( s )  of (2.18) commutes for all points on the path 
AoBAIAo: 

d ( S d d ( S 2 )  = J 4 ( S Z ) d ( S l ) .  (4.1) 

In this case the integration can be accomplished without the time-ordering operator 
9. There are no restrictions as far as the connectedness of the space-time is concerned. 
The operator d ( s )  in the propagation equations (2.6) and (2.146) is a linear combina- 
tion of components of Gwv. Therefore, assuming (4.1), the integration (2.19) results 
in a solution of the structure 

411 = e x p ( W / h )  exp(b,vGFu)rLdB) (4.2) 

with z,, being no longer an infinitesimal quantity, but the result of a global integration. 
Accordingly, we cannot expect a generally applicable formula like (3.7) which relates 
z,, to the external fields. Any physical situation needs a new explicit integration. 
Nevertheless, we can work out the resulting interference for two classes of physical 
situations: the resulting z,, in (4.2) is either a pure Lorentz three-rotation or a pure 
Lorentz boost. We use the decomposition of 2,“ and the related definitions of 0 3.3. 
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( a )  Pure Lorentz three-rotation. This case is characterised by z,, = zpv and we can 
evaluate (4.2) using 

( Z ~ B G “ ’ ) ~ ~  = ( - l ) m ~ 2 m  (ZPBGu@)2mc1 = ( - l ) m z 2 m + 1 i  QB G“P (4.3a, 6 )  

( m  = 0, 1, 2, . . .) where ius = z zpB,  z = (~zpBzQB)1’2. The resulting wavefunction is 

(4.4) 

This is again a spin transformation related to a rotation through an angle z about the 
three-axis za = $77 OLUPvu,zgy. 

j ”  (B) = 2{[1+ ( c o s ~ ~ z ) ) ( c o s ( A C $ / h ) ) ] j ~  (B) - (sin($z ))(sin(AC$/h))i*”,S; (B) 

-1 1 

lLII = exp(+iAC$/h)(cos($z) + &GOL@ sin& ))GI(B). 

Inserting into the Dirac current j ”  (B) we obtain with $(B) = JII(B) + (LII(B) 

+ (sin($z))(cos(tz) +cos(AC$/h))i”,j; (B) + (sin(tz))2i”piP,j;(B)}. 
(4.5) 

The intensity of the two interfering waves behind the mixer is again given by J ( B )  of 
(3.19). With (3.15b) and (3.18b) it follows from (4.5) as the exact result for the 
relative intensity in this particular global experiment: 

( b )  Pure Lorentz boost. In this case the global experiment results in z,, = 25[,u,l 
and the corresponding relations ( p  = La/(, 5 = ( -5“[u)1’2) 

( z , , G ” ” ) ~ ~  = ( 2 m  ( Z , ~ G ’ ” ’ ) ~ ~ + ~  = 52m+12f[ , V I  G,” (4.7) 

( m  = 0 ,  1, 2 ,  . . .) lead with (4.2) to the wavefunction 

clrII = exp(iAC$/h)(cosh($<) + 2f~ ,u ,~Gwy sinh($[))$,(B), (4.8) 

The Dirac current of the interfering waves in B follows as 

j ” (B)  = 2{[1+ (cosh(~5))(cos(AC$/h,)ljf”(B)+ (sinh(i())2uEj;(B)uK 

- ( s i n h ( 5 [ ) ) ( s i n ( A ~ / h ) ) ~ ~ P v ~ u @ S ~ ( B )  - (sinh(i[))2iEj; (B)? 

+ (sinh(i[))(cosh(i[) + cos(Aq5/h))([”u, - f e u w ) j F } .  (4.9) 

For the measured relative intensity J ( B )  we find with ( 3 . 1 8 ~ )  

5. Applications 

We will discuss the gravitational Aharonov-Bohm effect as a theoretical application 
of the results for the global case, and on the other hand interference experiments as 
an application of the formulae for the infinitesimal case. 
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Today’s experimental possibilities are limited by the fact that the rotation w a  can 
only be produced by the Earth’s rotation and that the linear acceleration a a  can only 
be caused by Earth’s gravity. The reason is that one cannot bring both interferometer 
and neutron source together (!) in a reference frame which accelerates or rotates 
relative to the Earth in an adjustable way. Because the Earth’s rotation w = 10-5s-1 
and gravitational acceleration a = lo3 cm s - ~  are extremely small, as far as our purposes 
are concerned, it will turn out that their influence on the interference pattern via the 
spinor amplitude can be completely neglected. Their influence via the phase shift, on 
the other hand, is measurable and has been detected by Collela et a1 (1975) for the 
gravitational acceleration and by Werner et a1 (1979) for the Earth’s rotation. 
Nevertheless, to demonstrate how the results of § 3 have to be applied to experimental 
situations, we evaluate the intensity relations (3.20) including the terms which represent 
the influence of the spinor amplitude. 

= 10 cm2 and neutrons with 
wavelength A = 1.4 A = 1.4 x g cm s-’ and 
velocity U = p / m  = 3 x io5 cm s-’. 

To do so, we assume an interferometer area of 
cm, momentum p = h / A  = 5 x 

5.1. Rotation 

We assume vanishing curvature and torsion. The acceleration is caused by centrifugal 
forces only. The length of the paths of the two neutron waves in the interferometer 
may differ by Al. In this case zKA of (3.7) reduces to z K A  = (wKA + 2arKuAJ which can 
be decomposed according to 9: 3.3 with z ,  =@,As, [ = a,As, w = ( - - ~ , w ~ ) ~ ’ ~  where 
a, is the centrifugal acceleration. In J ( B )  of (3.20) 6 introduces, via the centrifugal 
acceleration, a factor (rotational velocitylc), which is multiplied by ur(B)/c. We 
neglect this quadratic relativistic effect. 

What remains to be determined is A 4  and As: (3.10) renders approximately 
A4/h=2mwX/h+27rAl/A =0.31+4.5X 108Al/cm (withw“ -E.”). 

This relation demonstrates the great influence of a difference A1 of path length 
on the phase. We have used the fact that with the normalisation (2.12) the centrifugal 
potential is approximately zero on the paths I and 11. For the same reason the time 
delay (3.12) reduces to As = - 2 w X / c 2 - A l / t .  = - 2 . 2 ~  s - 3 . 3 ~  10-6(Al/cm) s so 
that $2 =$WAS = -5.5 X -8.25 x lO-”Al/cm. The contributions of the second 
and third term in (3.20) representing the influence of the Earth’s rotation on the 
spinor amplitude are of this magnitude. Only the first term is measurable in (3.20) 
which is due to the phase difference A 4  alone. 

5.2. Acceleration 

We assume vanishing curvature, torsion and rotation which implies 4‘ = a As, z = 0, 
a = ( - U , U ~ ) ” ~ .  In the discussion of the respective experiment, it has already been 
shown that the Earth’s gravitational potential U causes a maximal contribution of 
-8.5 x 27r to A 4 / h  so that we derive from (3.10) A 4 / h  = -5.3 +4.5 x lo8 Allcm. For 
the time delay we may use (3.12): As = -(7 x 10-13+3 x Allcm) s. To obtain a 
maximal interference effect we assume that the interferometer is arranged so that 
cos(A4lA) = 1 and is parallel to uI .  The contribution of the influence of the Earth’s 
gravitational acceleration on the spinor amplitude, as given by the second term in 
(3.20), is then of magnitude f((% u I / c )  = 5 x Al/cm). Again, the spin 
effect is of no practical importance and the pure phase effect remains. 
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5.3. A gravitational Aharonov-Bohm effect 

In a metric theory of gravitation, a genuine gravitational field is related to a non- 
vanishing Riemann curvature tensor. The gravitational analogue of the well known 
electromagnetic Aharonov-Bohm effect is, therefore, the following. Although two 
coherent neutron waves move in regions where the curvature vanishes, there is, 
nevertheless, an effect on the resulting interference pattern from the non-vanishing 
curvature of the region from where they are exc1uded.t 

Following Dowker (1967, 1969) we will discuss a cone with an apex. The two- 
dimensional cross-sections of a flat space-time described in cylindrical coordinates 

( 5 . 1 )  ds2 = dt2 - dp2 - p 2  dQ2 - dz2  

is given the topology of a cone in demanding 

O S Q  S ~ T / H  H s 1  (5.2a, b )  

and identifying according to ( t ,  p, Q = 0, z ) - ( t ,  p, Q = 2rr/H, 2). The limiting case 
H = 1 is the Minkowski space with Euclidean topology. The apex p = 0 does not 
belong to the space-time. 

hpbj = 8," hTi1 = S r  hP2, = p-'S; hP3) = 8 ;  (5.3a, 6 ,  c,  d )  

which is adjusted to the coordinate lines. The corresponding spinor connection is 

0 1 2 3  We use the notation (x , x , x , x = t ,  p, 50, z 1 and introduce the tetrad field 

raz0 = r,=l = ra+ = o raX2 = G ~ ~ ) ~ ~ ~ .  (5 .4a,  b )  

The interferometer worldlines have tangent vectors u a  = h& which implies that 
there are no kinematical effects ( w , ~  = 0, a ,  = 0). The two coherent neutron waves $I 

and qbII pass around p = 0 (the resulting closed loop encloses the points p = 0.) We 
assume vanishing torsion and that the corresponding two paths are symmetric, so that 
there is no time delay and no phase difference (As = 0, A 4  = O), and the emission 
points A0 and Al  agree. With ( 5 . 4 )  we then obtain, as result of the integration in (2 .19)  

$;I(B) = exp(AqG""2')t,bI(B) AQ = 25r/H. (5.5a, b )  

That the spinor t,b'dB) of ( 5 . 5 )  does not already describe the second of the two 
interfering neutron waves in B can be seen directly in the limiting case H = 1 where 
the cone degenerates to a plane. In this case, with our assumptions above, we must have 

h ( B )  = $I@) (5 .6 )  

which is not reflected by ( 5 . 5 )  because of AQ = 2 ~ .  The reason for this is that the 
identical spin transformation is related to a Lorentz rotation of the tetrad through 0 

The gravitational AB effect has been considered for vectors as well as for spinors. Papini (1967) was the 
first to propose it for spinors: parallel transport of a spinor around a closed orbit which encloses a tube 
with non-zero curvature results in a non-zero spinor transformation. As for the vectorial case, the Regge 
calculus (Regge 1961) concerning cone-like manifolds is based on it. For spinors most of the calculations 
were done for the two-dimensional cone (embedded in a four-dimensional space-time) either with a 
smoothly capped dome giving a region of finite curvature (Ford and Vilenkin 1981), or with an apex giving 
a singularity (multiply connected manifold, Dowker 1967,1969). To be complete, we mention that Lawrence 
et a i  (1973) have considered the massless Dirac equation in a weak external gravitational field to discuss 
the AB effect. 
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and 47r, and not through 27r. With regard to the spin structure, a tetrad which is 
obtained by a rotation through 27r must be regarded as a different object. ( 5 . 5 )  refers 
to such a tetrad. It needs the additional rotation by 27r or -27r to obtain the spinor 
I,~II(B) which refers in this sense to the same tetrad in B as &(B): 

&AB) = exp(-2~G""~')1,bf~ (B). (5.7) 

Now (5 .6 )  is fulfilled for H = 1. 

then obtain 
The same must be observed in the general case H>1. With (5 .6)  and (5.7) we 

l -H l -H 
I,hIr(B) = cos 7r( -) + 2G""2'sin T( 7) H 

and for the intensity with (4.6) finally 

J (B)  = 2J1(B)[ 1 +cos ?I( y)] I (5 .9 )  

The non-vanishing second term on the right-hand side represents a gravitational AB 
effect. 

6. Conclusions 

We have described the coherent neutron waves in the WKB approximation of the 
Dirac equation in Riemann-Cartan space. The interference result reflects influence 
on the spinor phase and on the spinor amplitude. The latter effect may not be 
neglected; torsion, for instance, acts only on the spinor amplitude. 

The experimental interferometer arrangement has been discussed in detail. To 
obtain a stationary interference pattern, (i) the interferometer must move along a 
Killing congruence, (ii) the neutron source must be stationary, which results in 
Lie-propagated amplitudes and (iii) torsion must show the same space-time symmetry. 

The influence of the interferometer kinematics and the external fields on the spinor 
amplitude can be read off most easily in the infinitesimal case. In general, there will 
be a time delay between the emission of the two coherent waves which finally interfere 
in one worldpoint. An influence of interferometer rotation and acceleration can be 
found only for non-vanishing time delay. It turns out that the left dual of the modified 
Riemann-Cartan curvature, the interferometer rotation and the three-axial vector of 
the torsion act like a spinorial Lorentz three-rotation. The interferometer acceleration 
(deviation from the gravitational free fall) and the modified curvature itself act like 
a spinorial Lorentz boost. A global evaluation of the exact expression can be used, 
for instance, to discuss the gravitational Aharonov-Bohm effect. 

The interferometer itself does not react on space-time torsion. Neutron propaga- 
tion, on the other hand, depends only on the total antisymmetric part of torsion. 
Accordingly, only this part influences the interference result either by a modified 
Riemann-Cartan curvature, or directly via the related three-axial vector of torsion 
which acts like an interferometer rotation. There is no influence of torsion on the 
phase difference or the time delay. Obviously, neutron interference offers, at least in 
principle, a possibility to measure space-time torsion. 
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Appendix 1. Time-like congruences 

We repeat the definitions and theorems of the theory of time-like congruences with 
normalised tangent vector field u " ( x )  (Synge 1960, Trautmann 1965)t on which the 
discussion of the stationary interferometer in § 2.2 is based. 

Lemma 1 (Ehlers 1961). If a congruence u " ( x )  is rigid, i.e. 

(i) 8 = 0 (+up = 0 

the following conditions are equivalent: 

(Al . l )  

(Al.2) 

Condition (ii) means that the vector of the angular velocity is Fermi propagated, 
i.e. this vector does not rotate. The interpretation of (iii) is that the change in time 
of the acceleration vector a' agrees with the propagation behaviour of the orthogonal 
connecting vector r' (with rEu ,  = 0) to the neighbouring worldline which, for a rigid 
congruence, is given by ( r P ; , u E ) h ;  = wuprp.  Condition (iii) means that the acceleration 
vector is permanently pointing to the same neighbouring particle. 

If the worldlines of the congruence are trajectories of a one-parameter group of 
isometries of the space-time (Killing trajectories), the congruence is called isometric 
or stationary. The following lemma relates this with conditions (i) and (iv) of lemma 
1: 

Lemma 2 (Salzmann and Taub 1954) 

(i)  8 = 0 

(iv) d[,a,l= 0 

a collinear vector field 
(A1.3) 

and the acceleration has a potential 

a, = -a,U U = 4 ln(5'6,) (Al.4a, 6 )  

Lemma 2 shows that rigid congruences which in addition fulfil conditions (ii) and 
(iii) of (A1.2) are isometric and can only exist in a stationary space-time. An immediate 
consequence is Lfcu" = 0 and 

(A1.5) U 
d[p5u1 = e (map + 2a[,up]). 

Appendix 2. Lie derivative of spinors 

We have to give a brief introduction about the Lie displacement and the Lie derivative 
of spinors because these concepts are rarely used in the literature. Our treatment is 

t Decomposition of U,,, by means of the projection tensor h,, =gn5-u,u0 leads to U,:, = 
w,, + gnB + $has + aauB with w(,,) = a[,,] = gn, = 0, w,,u6 = CT,,U' = 0. The quantities U,@. U+, 0 defined 
this way describe respectively rotation, shear and expansion of a cloud of neighbouring particles with 
velocity t ia.  The vector a n  = uCI:.ue, a,u" =0, a = is the acceleration (deviation from geodesic 
motion). w n  = ~q wXAu5,  w,ua = 0,  w = ( - - W , W " ) " ~  represents the angular velocity of the rotation of 
neighbours with regard to Fermi-propagated axes in the rest space of a particle. 

1 Bar* 
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deliberately a heuristic one, focusing on the relation to the Lie displacement of a 
tetrad (for a more elaborate treatment see Kosmann (1972), compare as well Jhangiani 
(1977)). The corresponding intuitive understanding makes the mathematical descrip- 
tion of a stationary working neutron source directly plausible. 

In the following we treat various derivatives in a unified way. The respective 
definitions can all be based on displacements. Consider a field of tangent vectors 5 
to curves parametrised by r, and let P be a point on a curve and P' a point on the 
same curve at the infinitesimal 'distance' Sr. In a local coordinate system this implies 

Different specific displacements of a tetrad along the 6 curve can be introduced 
(parallel displacement, Lie displacement, Fermi displacement, . . ,) and related here- 
with different vector derivatives 9( (directional derivative, Lie derivative, Fermi 
derivative, . . .). We assume that the metric g fulfils 

x a  = x a  +ea St .  

9 g = o  (A2.1) 

so that a displaced tetrad remains a tetrad. This condition may be weakened but is 
sufficient for our purpose. To any such transport of a tetrad we can relate a displacement 
of a spinor, and accordingly define a respective spinor derivative 9, (spinor directional 
derivative, spinor Lie derivative, spinor Fermi derivative,. . ,) in demanding that the 
components of the displaced spinor do not change during the transport if they are 
referred to the displaced tetrad. This process may be called co-dragging of a spinor. 
In the following we will use it to introduce the spinor Lie derivative. 

Let h,(P) and $(P) be the tetrad and spinor in P and h ',(P') and $'(P') the transferred 
tetrad and the co-dragged spinor in P' obtained by a certain displacement rule. The 
co-dragging is reflected by the numerical identity 

e 

$'(P') = $(PI. (A2.2) 

$'(P') refers to the displaced tetrad hh(P') and not to the tetrad h,(P') which will be 
found there. The respective derivations of the tetrad and spinor are then given by 

9 h ,  = St-'[h, (P') - hh (P')] (A2.3a, 6 )  

The spinor $'(Pf)L is thereby obtained from $'(P') by the infinitesimal spin transforma- 
tion which is related to the Lorentz transformation L. 

i+!"(P')L= ( 1  +tZ,bG"b)$'(p') L: h,(P') = (Sf: +z,b)hk(P') (A2.4a, 6)  

(Gab = $yr"yb') by which the displaced tetrad in P' is rotated into the one that is 
already there. This spin transformation guarantees that the two spinors on the 
right-hand side of (A2.36) refer to the same tetrad h,(P'), 

94 = st-'[$(p') - (L'(P')~]. 
c 5 

A direct consequence of ( A 2 . 3 ~ )  and (A2.46) is 

(A2.5) b 
2, = St(hb,  9h,> = h:(9h, )"St .  

5 F 

Inserting ( A 2 . 4 ~ )  into (A2.36) we obtain the final form of the spinor derivative. 

?$ = (d$, ~ ) - ~ ( 8 t ) - ' z a b G 4 &  = (a,$)t" -Ih:(?h,)"G"& 

where we have used (A2.5) and made reference to a local coordinate system. 

(A2.6u, 6)  
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The covariant spinor derivative V of the footnote to $2.1 which refers to the 
Christoffel parallel propagation, can be read off immediately from (A2.66) by specialis- 
ing gt to the directional derivative gt = ( ),,(". To obtain the Lie derivative of a 
spinor, we simply have to specialise on the right-hand side of (A2.66) to the vector 
Lie derivative gt = 2( which leads to 

0 

=W = (a,rL)t" -$hi[(a,h!)t" -(a&@)h~IG4b$ 

= (a,*)t" - 4h;[hE;,t" - t@;"h zG4b* 

= tu8,11 +%a1,&l)G"@4. (A2.7) 

5 

The Lie derivative of tensors is a pre-metric and pre-affine concept. Correspondingly, 
the explicit form of the Lie derivative of spinors also contains only partial derivatives. 
It may be convenient to rewrite it, for example, with the aid of the Christoffel 
connection as we have done above. The Lie derivative (A2.7) is type-preserving and 
fulfils all conditions of a derivative. 

For the use in 3; 2 we note that according to the construction above, the Lie 
derivative vanishes (2'4 = 0) if and only if the q9 field on the worldline with tangent 
vector 5" is obtained by co-dragging with a Lie displaced tetrad (Y;hz = 0). 

The Lie derivative of the adjoined spinor 3 follows from the demand that for 
scalars reduce to the partial derivative 

(A2.8a, 6) 

The Dirac matrices y a  are (1.0)-tensors and (1.1)-spinors. It can be shown that with 
(A2.1) 

(A2.9a, 6) 

A consequence of (A2.7)-(A2.9) is that for vectors and tensors like j "  =$y"* the 
spinor Lie derivative reduces to the one for tensors. 

Appendix 3. Stationarity for the interference pattern 

We prove a statement of 0 2.2. It is to be expected that the interference pattern will 
not change in time, because of the Lie conditions (2.10), (2.13) and (2.14) which have 
to be fulfilled by apparatus, source and space-time, i.e. 

M M 
?*I = 0 ?*I1 = 0 (A3.la, 6)  

(where M denotes the worldline of the mixer) if one additionally requires the same 
symmetry for the space-time torsion: 

?K["BVl = 0. (A3.2) 

To show this it will not be necessary to assume that the expansion Bo of the neutron 
beams vanishes. 
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The particle paths with tangent vector u a  are geodesic. Because of the commutativ- 
ity of covariant and Lie derivative in a stationary space-time this leads to (Yano 1955) 

2?va = o  ze, = 0. (A3.3a, 6 )  
c 5 

Stationarity of the space-time metric also implies (Yano 1955) 

 AS, = 0 ffP c 
(A3.4a, b )  

where Asl is the arc length of the neutron path between two arbitrary points lying on 
fixed lines of the u a  congruence. 

Because of the propagation equations (2.3), (2 .5)  and (2.6) the spinors received 
in B are the following functions of the spinors emitted in A. and A l :  

(A3.5) 

In choosing N particular u a  worldlines, we introduce an N-fold cutting of the 
paths I and I1 with related distances Asi, i = 1 . . . N .  Because of a property of the 
time-ordering operator, (A3.5) can then be written: 

N 
I , ~ ~ , ~ ~ ( B )  = lim [l -imPs,/A-fB,(s,)As, 

N-m 

0 
- (ra (s, 1 + (s, )GPY(sI ))U (s, ) ~ l 1 4 ( A o . ~ ) .  (A3.6) 

Finally using the product rule of the Lie derivative, the demand (A3.2), the results 
(A3.3)-(A3.4) and furthermore for $(Ao) and (L(A1) the fact that the neutron source 
is stationary, it follows that (A3.6) has the intended relations (A3.1) as an immediate 
consequence. The interference pattern is stationary. 

Note added in proof. J Anandan (1979 Nuooo Cimento 53A, 221) also considers an interference experiment 
based on an eikonal approximation of the Dirac equation. The influence on the spinor amplitude is 
represented by an additional phase difference which can only be evaluated in the low-energy limit. On 
the other hand, this influence results primarily in a Lorentz transformation. It is doubtful that the polarisation 
after the interference can be expressed as function of phase differences only. Furthermore, neither a theory 
of the interferometer nor a theory of the neutron source are developed. Accordingly, inertial effects due 
to the spin amplitude are not taken into account. The author states that torsion influences the phase via 
the 'closing gap'. This is wrong already for the following reason: the neutron paths are influenced by the 
Christoffel affinity only. Note that in this paper torsion is minimally coupled not to the Dirac Lagrangian 
but to the Dirac equation. 
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